Positive Solutions of a Singular Positone and Semipositone Boundary Value Problems for Fourth-Order Difference Equations
نویسنده
چکیده
This paper studies the boundary value problems for the fourth-order nonlinear singular difference equationsΔ4u i−2 λα i f i, u i , i ∈ 2, T 2 , u 0 u 1 0, u T 3 u T 4 0. We show the existence of positive solutions for positone and semipositone type. The nonlinear term may be singular. Two examples are also given to illustrate the main results. The arguments are based upon fixed point theorems in a cone.
منابع مشابه
Multiple positive solutions to singular positone and semipositone m-point boundary value problems of nonlinear fractional differential equations
where 1 < α < 2, 0 < βi < 1, i = 1, 2, . . . ,m – 2, 0 < η1 < η2 < · · · < ηm–2 < 1, ∑m–2 i=1 βiη α–1 i < 1, D α 0+ is the standard Riemann–Liouville derivative. Here our nonlinearity f may be singular at u = 0. As an application of Green’s function, we give some multiple positive solutions for singular positone and semipositone boundary value problems by means of the Leray–Schauder nonlinear a...
متن کاملSingular Positone and Semipositone Boundary Value Problems of Nonlinear Fractional Differential Equations
We present some new existence results for singular positone and semipositone nonlinear fractional boundary value problemD0 u t μa t f t, u t , 0 < t < 1, u 0 u 1 u ′ 0 u′ 1 0, where μ > 0, a, and f are continuous, α ∈ 3, 4 is a real number, and D0 is Riemann-Liouville fractional derivative. Throughout our nonlinearity may be singular in its dependent variable. Two examples are also given to ill...
متن کاملOn Approximate Stationary Radial Solutions for a Class of Boundary Value Problems Arising in Epitaxial Growth Theory
In this paper, we consider a non-self-adjoint, singular, nonlinear fourth order boundary value problem which arises in the theory of epitaxial growth. It is possible to reduce the fourth order equation to a singular boundary value problem of second order given by w''-1/r w'=w^2/(2r^2 )+1/2 λ r^2. The problem depends on the parameter λ and admits multiple solutions. Therefore, it is difficult to...
متن کاملSubsolutions: a Journey from Positone to Infinite Semipositone Problems
We discuss the existence of positive solutions to −∆u = λf(u) in Ω, with u = 0 on the boundary, where λ is a positive parameter, Ω is a bounded domain with smooth boundary ∆ is the Laplacian operator, and f : (0,∞) → R is a continuous function. We first discuss the cases when f(0) > 0 (positone), f(0) = 0 and f(0) < 0 (semipositone). In particular, we will review the existence of non-negative s...
متن کاملPositive solutions of second-order semipositone singular three-point boundary value problems
In this paper we prove the existence of positive solutions for a class of second order semipositone singular three-point boundary value problems. The results are obtained by the use of a GuoKrasnoselskii’s fixed point theorem in cones.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010